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ON THE EXISTENCE OF MILD SOLUTIONS TO SOME
SEMILINEAR FRACTIONAL INTEGRO-DIFFERENTIAL
EQUATIONS

T. DIAGANA, G. M. MOPHOU, AND G. M. NGUEREKATA

ABSTRACT. This paper deals with the existence of a mild solution for some
fractional semilinear differential equations with non local conditions. Using a
more appropriate definition of a mild solution than the one given in [12], we
prove the existence and uniqueness of such solutions, assuming that the linear
part is the infinitesimal generator of an analytic semigroup that is compact for
t > 0 and the nonlinear part is a Lipschitz continuous function with respect

to the norm of a certain interpolation space. An example is provided.

1. INTRODUCTION

Let X be a Banach space and let T' > 0. This paper is aimed at discussing about
the existence and the uniqueness of a mild solution for the fractional semilinear

integro-differential equation with nonlocal conditions in the form:
t
DP a(t) = —Ax(t) + f(t (1)) + / a(t — $)h(s,a(s))ds,  te0,T),
(1) ’
2(0) + g(z) = xo,

where the fractional derivative D? (0 < 3 < 1) is understood in the Caputo sense,
the linear operator —A is the infinitesimal generator of an analytic semigroup
(R(t))i>0 that is uniformly bounded on X and compact for ¢ > 0, the function

a(-) is real-valued such that

T
(2) ar = /0 a(s)ds < oo,

the functions f,g and h are continuous, and the non local condition

g(@) = era(ty),
h=1

with ¢, k= 1,2, ...p, are given constants and 0 < t; <tg < .. <t, <T.
Let us recall that those nonlocal conditions were first utilized by K. Deng [4]. In

his paper, K. Deng indicated that using the nonlocal condition z(0) + g(z) =
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to describe for instance, the diffusion phenomenon of a small amount of gas in a
transparent tube can give better result than using the usual local Cauchy Problem
2(0) = zo. Let us observe also that since Deng’s paper, such problem has attracted
several authors including A. Aizicovici, L. Byszewski, K. Ezzinbi, Z. Fan, J. Liu, J.
Liang, Y. Lin, T.-J. Xiao, H. Lee, etc. (see for instance [1, 2, 3,4, 9, 8, 7, 14, 11, 13]
and the references therein).

This problem has been studied in Mophou and N’Guérékata [12]. In this pa-
per, we revisit that work and use a more appropriate definition for mild solutions.
Namely, we investigate the existence and the uniqueness of a mild solution for
the fractional semilinear differential equation (1), assuming that f is defined on
[0,T] x X, x Xo where X, = D(A%) (0 < o < 1), the domain of the fractional
powers of A.

The rest of this paper is organized as follows. In Section 2 we give some known
preliminary results on the fractional powers of the generator of an analytic compact
semigroup. In Section 3, we study the existence and the uniqueness of a mild
solution for the fractional semilinear differential equation (1). We give an example

to illustrate our abstract results.

2. PRELIMINARIES

Let I = [0,7T] for T > 0 and let X be a Banach space with norm || - ||. Let
(B(X), || - lzcx)) be the Banach space of all linear bounded operators on X and
A: D(A) — X be a linear operator such that —A is the infinitesimal generator of
an analytic semigroup of uniformly bounded linear operators (R(t));>0, which is

compact for ¢ > 0. In particular, this means that there exists M > 1 such that

(3) sup|| R(t)||px) < M.

t>0

Moreover, we assume without loss of generality that 0 € p(A). This allows us to
define the fractional power A® for 0 < a < 1, as a closed linear operator on its
domain D(A®) with inverse A~%(see [8]). We have the following basic properties
for fractional powers A% of A:

Theorem 2.1. ([15], pp. 69 -75). Under previous assumptions, then:

(i) Xo = D(A%) is a Banach space with the norm ||x||o := ||[A%* x| for z €
D(A%);
(i1) R(t): X — X, for each t > 0;
(i1i) A*R(t)x = R(t)A%x for each x € D(A%) and t > 0;
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(iv) For every t > 0, A“R(t) is bounded on X and there exist M, > 0 and
0 > 0 such that

M, _
(4) |AYR(t)||Bx) < Ja © ot

(v) A~% is a bounded linear operator in X with D(A%*) = Im(A™%); and
(vi) If 0 < o < v, then D(A") — D(A®%).

Remark 2.2. Observe as in [9] that by Theorem 2.1 (ii) and (iii), the restriction
R, (t) of R(t) to X, is exactly the part of R(t) in X,.
Let z € X,,. Since

[R(t)zlla = [[A*R(E)z| = [[RE)AY|| < R l|A%2] = RO lpe)||2] o
and as t decreases to 0
|R(t)z — || = [[A*R(t)x — A%z = [|[R(t) A%z — A%x|| — 0,

for all x € X, it follows that (R(t)):>0 is a family of strongly continuous semigroup
on X, and || R (t)|lex) < ||R(t)||Bx) for all ¢ > 0.

Lemma 2.3. [9] The restriction Ro(t) of R(t) to X, is an immediately compact

semigroup in X, and hence it is immediately norm-continuous.

Now, let ®3 be the Mainardi function:

= (—2)"

olz) = ;nlf(—ﬂn F1-p)
Then
(5a) $s(t) > 0 for all t > 0
5b y(t)dt = 1;
(5b) | @t
o T+

(5¢) /0 t"Pg(t)dt = T+ )’ vn € [0,1].

For more details we refer to [10].

We set
©) S = [ es@R0N D,
(7) Ps(t) = /O Ooﬁe%(e)R(tﬁe)de

Then we have the following results
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Lemma 2.4. [16] Let Sg and Pg be the operators defined respectively by (6) and
(7). Then
p

(i) ISg(t)x| < M|z||; [|Ps(t)x] < MWHSC” forallz € X and t > 0.

(i) The operators (Sg(t))i>0 and ( t>0 are strongly continuous.

Ps(t))
(iii) The operators (Sg(t))e>o and (Ps(t))

t+>0 are compact.

Lemma 2.5. Let Sg and Pg be the operators defined respectively by (6) and (7).
Then
1Sp(t)xll,, < M|z, , V& € Xa, t 20,
BMot=PoT (2 — )
IPs®)al, <{  TL+AL=a)

—|7||a ) z € Xy, t>0.

Proof. Using (3) and (5b) we have for any = € X, and ¢t > 0,
/ Ds(0)R(0t°)x dox

/90

M/ B5(0) || A%|| do
0

= M|a|l,, Yz € Xa.

lz]| o =xzeX, t>0,

[1Ss(®)l,

(0%

IN

D5(0) [|A*R(0t°)z|| dOx

IN

In view of (4) and (5c¢), we can write for any ¢ > 0,

IPs(t)zll, = ‘/()Ooﬂﬁ@g(Q)R(etﬁ):cde

/mﬁo@ﬂ(o) | A“R(6t7)x|| db
0

«

IN

IN

/0 B0®5(6)|| A R(07) |50 || ]| 46

gMaraﬁ||x||/OO91*aq>B(9) a0
BMt=PoT (2 2 @)
S T+ a0-a)

|
/

IN

|||, Vz € X

and
IPa(t)z|,

(e

/ wﬂ@@g(@)R(Gtﬁ)x do
0

IN

BOs(0) || A*R(6t7 )| do
0

M|zl Jy~ 562 (0)d

, Vo e X,.

IN

O
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Definition 2.6. ([5, 6]) Let Sg and Pg be operators defined respectively by (6)
and (7). Then a continuous function = : I — X satisfying for any ¢ € [0,7] the

equation
z(t) = Sp(t)(xo —g(2))

(8) t fsﬁ_l — S s, x(s)) — ta — S s, x(s S
+/O<t Y P(t )[(f«(» /O<t s, z(s))| ds,

is called a mild solution of the equation (1).

In the sequel, we set

9) Kx(t) = /0 a(t — s)h(s,z(s)) ds.

We set o € (0, 1) and we will denote by Cq, the Banach space C([0,T], X, ) endowed

with the supnorm given by

l2]|oc := sup [|z]|a, forzeC.
tel

3. MAIN RESULTS

In addition to the previous assumptions, we assume that the following hold.

(Hy) The function f : I x X, — X is continuous and satisfies the following
condition: there exists a function uq(t) € L* (I,RT) such that

1t 2,) = FE 9l < m@)z = ylla

foralltel, =,y € X,.
(Hz) The function A : I x X, — X is continuous and satisfies the following
condition: there exists a function us(t) € L (I,RT) such that

[h(t, @) = h(t,y)ll < pa )]z = ylla

foralltel, =,y € X,.
(Hz) The function g : C, — X, is continuous and there exists a constant b such
that

lg(x) = g(W)lla <Dl — ylloo
for all z, y € Cq,.

Theorem 3.1. Suppose assumptions (Hq)-(Hs) hold and that Qo g1 < 1 where

_ BM,T(2 — a)TP0—)
Qs = | Mo+ 50— anaa—ay Umle=amo +arlelieus,)|

If zg € X, then (1) has a unique mild solution x € C,.
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Proof. Define the nonlinear integral operator F : C, — C, by
(Fa)(t) = Sa(t) (w0 — 9(2)),
b [ Bl = ) [0 + Kn(o)] d,
0
where K is given by (9).

In view of Lemma 2.4- (ii), the integral operator F' is well defined.
Now take t € I and z,y € C,. We have

I(F2)®) = (Fy)@Blla = [1S() (9(2) = 9W) lla
+ / (t =) [Ba(t — ) (£(s,2(5) = F(s,9(s))l,, ds

+ / (t = 551 [IPa(t — 5) (K 2(s) — K y(s))]],, ds

which according to Lemma 2.5 and (Hs) gives

[(F2)(®) = (Fy) (D)o < Mblz = ylloo

—BMQF(Q—a) t — 5)Pl=a)—1 s, x(s)) — f(s,y(s S
Fg;ﬁga»/ot“ P (s,0()) — s, 9(s))] d
Pra T Y — 5)flm)—1 x(s) — s s
a1 R |(K (s) — K y(s)] d

Since (Hz) and (2) hold, we can write

[Kx(s) — Ky(s)| = /Osa(s = 7) [|h(7, 2(7)) — h(m,y(T))|| dr

S

IN

/0 a(s — 7)pa(7) lz(r) — y(r)|| dr

IN

aTHM2||L°°(I,]R+)||1' = Ylloo-

Thus, using (H;) we obtain

[(Fz)(t) — (Fy)(t)]| , <Mbl|z — yl|
BMI'(2 - a)llz — yllso
(1 + A1 —a))
BM,T(2 — )P0~
F(l =+ 5(1 _ a))(ﬁ(l — a)aTHM2HL°°(I,R+)”1' —Ylloo
SMbl|lz = ylloo
BM,T(2 — a)TP(—a)
o+ 01— ey | Yl
BMI(2 — a)T?
I'(1+5(1-a))(B01
<Qap,7lT -yl

t
[ =920 sy ds
0

—~

9T o ol
T — Ylloo||M2]|Lo=(1,R
— a)) (I,R4)
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So we get
[(Fz)(t) = (Fy) ()l < Qaprd)]r =yl

Since Q, 8,7 < 1, the contraction mapping principle enables us to say that, F' has
a unique fixed point in C,,

t

z(t) = Sp(t) (zo — g(x)) + / (t =) Pyt — 5) [f(s,2(5)) + K x(s)] ds

0

which is the mild solution of (1). O

Now we assume that

(Hy) The function f : I x X, — X is continuous and satisfies the following

condition: there exists a positive function p; € L(I,RT) such that

1t 2)]| < pa(t),

(H5) The function h : I x X, — X is continuous and satisfies the following
condition: there exists a positive function pg € L°°(I,RT) such that

1h(t, )| < pa(t),

(Hg) The function g € C(Cq,X,,) is completely continuous and there exist A,y >
0 such that

l9(@)lla < Allzlloc + -

Theorem 3.2. Suppose that assumptions (Hy)-(Hg) hold. If xo € Xy and

1
(10) MM < 5

then (1.1) has a mild solution on [0,T].

Proof. Define the integral operator F': C, — C, by

(Fa)(®) = Sa®) (20 - o),
+ / (t— )5 By(t — 5) [f(s,2(s)) + Ka(s)] ds,

and choose r such that

B(l-a) _
r> T BMT(2 — a) (H/L1||L°°(I]R+)+aT||:u2HL°°(IR+))
I(1+5(1=a)(B(1 —a)) ’ ’
+ 2M([lzoll, +7)-

Let B, = {x € Co : ||7]loo < 7}. We proceed in three main steps.
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Step 1. We show that F(B,) C B,. For that, let € B,. Then for ¢t € I, we
have

IN

[(Fz)() | 1S (t) (o = g(@))l[

—Sﬁil — s s, x(s S
n /o(t )T [Pa(t = 5) f (s, 2(5))l,, d

¢
+ / (t — )71 |Po(t — s)K x(s)]|,, ds
0
which according to (Hy)-(Hg) and Lemma 2.5 gives

[(Fa)®)lla < M (lzolly + Allzlloo + )
BMT(2 — o)

- t — g)f-a)—1 s, x(s S
e A 17, 2(s)] d

BMI'(2 — o) ! _ )01 s s

g | = Kt 4

M ealy + el +

BMT2—a) (' a1, () s

F s, T )
BM,T(2 — )

T t — 5)fma)—1 sas—T o(T)dT ds.
+ rreae | = et = (i d

Consequently, using the inequality MX < %, which yields MA[|z||oc < % and the

IN

choice of r above, we get

[(Fz)Blla < M([2olly + Mlzlloc +7)

Il Lo (1) TP~ BMLT(2 — o)
(Bl —a) L1+ p(1—a)

ol Lo (12 ) TPE) BMLD(2 — a)ar
(B —a) L1+ 601 —a)"

In view of (10) and the choice of r, we obtain

+

[(Fz)lloc < 7

Step 2. We prove that F is continuous. For that, let (x,) be a sequence of B,
such that z,, — x in B,.. Then

f(s,zn(s)) — f(s,2(s)), n— oo,
h(t,zn(s)) — h(t, z(s)), n — 0o

as both f and h are jointly continuous on I x X,.

Now, for all t € I, we have
[Fan — Fafoa < HSﬁt(t)(g(wn) —g(@)ll,
/0 (t — 8)P 1Pt — 5) (Kzn(s) — Kx(s)) ds

ﬂjvwW1avwﬂﬂ&m@»—ﬂaa®»wH,
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which in view of Lemma 2.5 gives

[ Fan — Fr|lo< M|g($n() -9 ;3)|oz
AM.T(2 — o t — g)fl—a)—1 S, Tp(s)) — f(s,x(s S
Féﬁ?f%“)”/%(t P (s, (5)) — fs.(5)]|
= @ — )P0 =1 Ky (s) — Ka(s S
g | (= K (s)  Ka(s)

for all t € I. Therefore, on the one hand using (2), (Hy) and (H;), we get for each
tel

1£(s,2n(s)) = f(s; 2D < 2p(s) for s € 1,

[Kzn(s) — Ka(s)| < /O a(s = 7)[|h(T, 2 (7)) = h(T, 2(7))||dT,
< 2/0 a(s — 7)us(T)dr
< 2ar|p2lLear,) for s € I

and on the other hand using the fact that the functions s — 2 (s)(t — s)?(1—®)~1
and s — (t — 5)?(1=®)~1 are integrable on I, by means of the Lebesgue Dominated

Convergence Theorem yields

/0 (t = )01 f(s,2(s)) — F(s,2(s))]| ds — O,

t
/ (t — 5)P0 == | K, (s) — Ka(s)|| ds — 0.
0

Hence, since g(z,,) — g(x) as n — oo because g is completely continuous on Cy, it

can easily be shown that

lim ||(Fap) — (Fz)lle =0,

n— oo

as n — 00.
In other words, F' is continuous.
Step 3. We show that F' is compact. To this end, we use the Ascoli-Arzela’s
theorem. For that, we first prove that {(Fz)(t) : « € B,} is relatively compact in

Xa, for all t € I. Obviously,{(Fz)(0) : = € B,} is compact.
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Let t € (0,T). For each h € (0,t), € > 0 and x € B,, we define the operator Fj, . by
(Fh,cx)(t) = Sﬁ(t) (o — g(x)
+ / s)°~ 1/ BOD5(O)R((t — 5)°0) f (s, x(s))db ds

—5)f1 —5)P0)Kx(s s

4 /0 (t / 80 4(0)R((t — )°0) K (s)d0 d

= Sp(t) (xo t—_g(iﬂ))

+ R(hﬁe)/ (t — 3)5_1/ BOD5(0)R((t — 5)°0 — hPe) f(s,2(s))do ds
0 €

t—h 00
+ R(hﬁe)/ (t — s)ﬁ—l/ BODs(0)R((t — 5)°0 — hPe)Kx(s)df ds.
0 €

Then the sets {(F},,x)(t) : « € B,} are relatively compact in X, since by Lemma
2.3, the operators R, (t), t > 0 are compact on X,. Moreover, using (Hy) and (4)

we have

I(F2)(E) = (Fex) (®)llo <
(t s)7~ 1/ B0 (0) | R((t — $)70) f (s, 2(s))]|, db ds+

s)7~ 1/ B0 (0) || R((t — $)70) f (s, 2(s))]|, db ds+

3)5—1/0669%(9) | R((t = 5)°0)Kx(s)|, db ds+

r\m —s

(t—s)P1 Ooﬁ@@ R((t — ) 0)Ka(s)|, dods.
\ ﬁ

Then using (4) and (Hy), we obtain

I(Fa)(t) = (Fua)(lla < BMa / (t — )P0, (s) / 019 4(0)d0 ds
O oo
+ 6M/ (t —s)P==1y, / B0 D 5(0)dh ds
+ ﬁM/ (t — )P0 1/ 801D 5(0) || K 2(s)|| O ds
4 BM/ (t — 5)P1-o)- 1/ 80" D5(0) || K2(s)|] d ds.

Since by (Hs) and (2),

|Kax(s)| < / a(s — 7)[h(r, 2(r)||dr
< a(s — T)ua(T)dr
0
< arllp2llperryys
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using (5c¢), we deduce for all € > 0 that

tB=) 3N, HM1||L°°(IR R
+ 0 —“dgz(0)do
e / 5(0)
hBA=) 30T, (2 — o)l poe1,ry)
B(1—a)T(1 + B(1 — a))

A=) BM || ol oo (1,7 yar
91 “®5(0)do

hBA=) 30T, 2 -« aT||,u2||L°O (LR+)
B(1l—a)l(1+A(1 - a))

[(Fz)(t) = (Fh.ex)(t)llo <

+

In other words

WD BMAT(2 — a)llpa |l (12,

B(1—a)T(1+4(1— )
WA= BMAT(2 — a)ar |z e ey

Bl—a)I'(1+ 81— a))

Therefore, the set {(Fx)(t) : « € B,} is relatively compact in X,, for all ¢ € (0,7
and since it is compact at ¢ = 0 we have the relatively compactness in X, for all

[(Fa)(t) = (Fhex) ()] <

t € I. Now, let us prove that F(B,) is equicontinuous. By the compactness of the
set g(B,), we can prove that the functions Fz, € B, are equicontinuous a t = 0.
For 0 < to < t; < T, we have

||(F96)(t1) — (Fa)(t2)lla < [I(Sp(t1) = Sp(t2)) (zo — g(2))ll,,
+ /O (t1 =) (Pa(ts — 5) = Pa(ta — 5)) (f(5,2(5)) + Kx(s)) ds

ta

[ (=977 = =9 Patta = )75 8(6) + Kl ))dH
0 [e%

t1
* / (t1 — )" "Pa(ts — 5)(f(s,2(s)) + Ka(s)) ds
to

<L+ 1L+ I3+ 1y,

[e3

[e3

where
I = |(Sp(t1) —Ss(t2)) (zo — g(x)ll,
L = / (b1 — )51 (Py(ts — 5) — Polts — 8)) (F(s, 2(s)) + Ka(s)) ds

I; = / (t1 — 5)771 = (ta — 8)P71) Py(ta — )(f(s,2(s)) + Kz(s))ds‘

t1
I, = / (t; —s)°~ 1]P’g(tls)(f(s,:c(s))qLK:c(s))dsH
EJQTDE, 2010 No. 58, p. 11
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Actually, I, I, I3 and I, tend to 0 independently of x € B, when t; — t1. Indeed,

let z € B, and G = sup [|g(2)]|«- In view of Lemma 2.5, we have
2€Cq

I 1S (t1) = Sp(t2)) (o — 9(=))ll,

| wa0)|Rerd) RO oo~ s(@)l 49

/Ooodw(@) HR(Gt?) - R(@tg)HIB(X) (|0l o + G)do

IN

A

from which we deduce that tlin% I; = 0 since by Lemma 2.3 the function ¢t —
2—1l1

[|Ra(t)]|o is continuous for ¢ > 0

I, < /0 2 [(tr = )7 Byt — 5) — By(ta — 5)) (f(s,2(s)) + Ka(s))|| , ds.

Therefore using the continuity of Pg(t) (Lemma 2.4) and the fact that both f and
K are bounded we conclude that lim Iy =0

to—t1

I3

IN

/O 2 ((t2 = )71 = (t = 9)77") [Pa(t2 — )(f(5,2(5)) + Kz(s))ll, ds

BM,T(2—a) (" _ a1 (4, — ¢80 B f(s. 2(s 5
= T [ (o == o= Ut 4

IMI2 o) [T — )Pt —(t; —5)P 1 —5)" P ||Kx(s)| ds

e [ =97 = (0= ) (2= 9 ()] .

Since —(ta—5) " (t; —5)8~1 < —(t; —5)P(1=) =1 because (t; —s)~*F < (ty—s)~F,
we deduce that

I3

IN

BM.T (2 — o)l L,y [ B(1—a)— B1—a)-
T [ (oot

arBMal(2 — a)||pal e ryy [*2 _ g)B—)=1 _ (4 _ o)Bl—a)—

* I'(1+p(1—a)) /0 ((t2 A i 1) .

BMaT'(2 — a)|pa || oe (1,4 (t1 — t)P0—)

Bl—a)l(1+/1—a) '+ 7

arBMaT(2 — o)l L1 r}y)

Bl —a)l(1+4B(1— )

A

(ty — t9)P0=e),

Hence lim I3 = 0 since 3(1 —«a) > 0.

t2—>t1
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1y )(f (s, 2(s) + Ka(s))ll, ds

A\
\ﬁ
&
—~
~+
—
\
»
~—
=
—
=
=)
—~
~
—
\
V)

ﬂMaF(Q — a) " — g)fl—a)—1 S, x(s x(s S
< F(l—i—ﬁ((l—a)))/t (11 = )0 | (5,2(5)) + Bals))] d
—6MQF2704 1 — 5)P-)—1 s Sas—T T, (T T)ds
< fiesa _a))/t2 (11— 5) )+ [ als = n)lh(r.a(r)ar)d
M,T(2 - a h —a)-1
< A ey + orlialimuay) [0 =0 s

P 1) =) BM, T (2 — a)
T Bl -1+ 61— )
Since S(1 — a) > 0, we deduce that tlim I, =0.

2—11

(lpallzoe(rryy + arllp2ll Lo ry))

In short, we have shown that F(B,) is relatively compact, for t € I, {Fz : x €
B} is a family of equicontinuous functions. Hence by the Arzela-Ascoli Theorem,
F is compact. By Schauder fixed point theorem F' has a fixed point € B,., which
obviously is a mild solution to (1). O

4. EXAMPLE

Let X = L2[0,7] equipped with its natural norm and inner product defined
respectively for all u,v € L?[0, 7] by

iz = ([ u@)Pde) ™ and fuo) = [ utojites

Consider the following integro-partial differential equation

oPu _ 0%u cos(tx) T
W(t,l') = @(t,x) m +/O e COS(U(S,IE)) dS,

(B) { uwt,0)=u(t,m)=0, tel0,1]

u(0, ) + do Z /7T cos(z — y)u(ty, y)dy = uo(x), x € [0,7]
k=070

where t € [0,1], z € [0,7], 0 < {1 <t < .. <ty <1, and dy > 0.
First of all, note that f, h,a are given by

ftu(t, ) = %, a(t) =e 1 and h(t, u(t,z)) = cos(u(s, z)),

1
and hence in (Hy) and (Hs) we take u1(t) = po(t) = w. Moreover, a; = / e~ltlat =
0
-1

1—e
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Let A be the operator given by Au = —u” with domain
D(A) :={u € L*([0,7]) : u" € L*([0,7]), w(0) = u(r) = 0}.

It is well known that A has a discrete spectrum with eigenvalues of the form n?,n €

N, and corresponding normalized eigenfunctions given by

2a() = @ sin(ng).

In addition to the above, the following properties hold:

(a) {2, :n € N} is an orthonormal basis for L2[0, 7];

(b) The operator —A is the infinitesimal generator of an analytic semigroup
R(t) which is compact for ¢ > 0. The semigroup R(¢) is defined for u €
L?[0, 7] by

oo
g uzn

(¢) The operator A can be rewritten as

Au = Z n?(u, 2n)2
n=1

for every u € D(A).
Moreover, it is possible to define fractional powers of A. In particular,

(d) For u € L?[0,7] and a € (0,1),

Z U Zn Zn;
(e) The operator A~ : D(A%) C L?[0, ] — L?[0, 7] given by

A% = Z n2(u, 2n)2n, Yu € D(A%),

n=1

where D(A%) = {u € L0, 7] Z (u, zn)zn € L?[0, ﬂ']}
" EJQTDE, 2010 No. 58, p. 14



Clearly for all t > 0 and 0 # u € L?[0, 7],

R = |3 e u, 20) 2]

IA
M3 3
a
N
=
N
g
N
3

AN
®

L

=

and hence ||R(t)||p(r2[0,)) < 1 for all t > 0. Here we take M = 1.
Set

N

W)(€) = 60> [ cos(é — yyultn, y)dy.

g Okz_o/o Y kY)Y
Suppose a € (0, 3) and

(11) (50 < %

Now

1A% () Zepm = D0 llznlliom 19()(E), z0)

n>1
< > n2{g(u)(€), )
n>1
- —Z|/ ¢) nsin(n&)dg|*
n>1
_ 2
_ nJ/aeg 2(€)de]
82
< %b@m Ol
2 9
< e @iz
7.‘_2
< 5§FN27T2||U||§0
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(Soﬂ'QN

V6
condition M\ < 1 holds under assumption (11).
Using Theorem 3.2 and inequality Eq. (11) it follows that the system (E) at

least one mild solution.

and hence ||g(u)||a < AMulloo + p where X = and p = 0. Therefore, the
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